Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
European Heart Journal ; 42(SUPPL 1):2890, 2021.
Article in English | EMBASE | ID: covidwho-1554265

ABSTRACT

Background: Heart disease is the leading non-obstetric cause of maternal death during pregnancy. In this field, the emergence of pandemic COVID-19 has caused the worst-case scenario considering that pregnant women are more susceptible to viral infections, and preexisting cardiac disease is the most prevalent co-morbidity among COVID-19 deaths. Purpose: To assess the maternal and fetal outcomes of COVID-19 during pregnancy of women with heart diseases. Methods: During the year 2020, among 82 pregnant women with heart disease followed consecutively at the Instituto do Coração-InCor, seven of them with an average age of 33.2 years had COVID-19 during their pregnancies. The underlying heart diseases were rheumatic valve disease (5 pt), congenital heart disease (1 pt) and one case with acute myocarditis, without preexisting cardiopathy. The prescription (antibiotics, inotropes, corticosteroids and others) used was according to the clinical conditions required for each patient, however subcutaneous or intravenous heparin was used in all patients. Results: Only one case had an uneventful maternal-fetal course, the other six women required hospitalization / ICU for an average of 25.3 days, including the need for mechanical ventilation in two of them. Serious complications were related to respiratory failure (ADRS), recurrent atrial flutter with hemodynamic instability, acute pulmonary edema, and cardiogenic shock associated with sepsis which caused two maternal deaths. There were two emergency mitral valve interventional, percutaneous balloon valvuloplasty and valve bioprosthesis replacement, respectively. There were five premature births with an average gestational age of 34.2 weeks of gestation, which resulted in one stillbirth. Pathological findings of three placental and the six-months follow-up of the babies did not confirm vertical transmission of COVID-19. Conclusions: The uncertain evolution given of the overlapping complications of three conditions-COVID-19, pregnancy, and heart disease-implies an increased risk for women with heart diseases of childbearing age, for whom pregnancy should be discouraged and planned after vaccination.

2.
Obshchaya Reanimatologiya ; 17(5):96-100, 2021.
Article in Russian | EMBASE | ID: covidwho-1498033

ABSTRACT

Results from recent large randomized trials investigating the use of high PEEP in patients without ARDS all suggest that high levels may increase mortality due to hypotension and bradycardia. A careful assessment of cardiac function — with particular focus on the right ventricle — should be performed before planning our ventilation strategy in any setting, including COVID-19 and ARDS in general. Mechanical ventilation should be respectful in regards of heart function, and tolerant with moderate hypoxia and hypercapnia, noninvasive (whenever possible) and synchronized.

3.
Trials ; 22(1): 42, 2021 Jan 11.
Article in English | MEDLINE | ID: covidwho-1021412

ABSTRACT

OBJECTIVES: As of December, 1st, 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, resulted in more than 1 472 917 deaths worldwide and death toll is still increasing exponentially. Many COVID-19 infected people are asymptomatic or experience moderate symptoms and recover without medical intervention. However, older people and those with comorbid hypertension, diabetes, obesity, or heart disease are at higher risk of mortality. Because current therapeutic options for COVID-19 patients are limited specifically for this elderly population at risk, Biophytis is developing BIO101 (20-hydroxyecdysone, a Mas receptor activator) as a new treatment option for managing patients with SARS-CoV-2 infection at the severe stage. The angiotensin converting enzyme 2 (ACE2) serves as a receptor for SARS-CoV-2. Interaction between ACE2 and SARS-CoV2 spike protein seems to alter the function of ACE2, a key player in the renin-angiotensin system (RAS). The clinical picture of COVID-19 includes acute respiratory distress syndrome (ARDS), cardiomyopathy, multiorgan dysfunction and shock, all of which might result from an imbalance of the RAS. We propose that RAS balance could be restored in COVID-19 patients through MasR activation downstream of ACE2 activity, with 20-hydroxyecdysone (BIO101) a non-peptidic Mas receptor (MasR) activator. Indeed, MasR activation by 20-hydroxyecdysone harbours anti-inflammatory, anti-thrombotic, and anti-fibrotic properties. BIO101, a 97% pharmaceutical grade 20-hydroxyecdysone could then offer a new therapeutic option by improving the respiratory function and ultimately promoting survival in COVID-19 patients that develop severe forms of this devastating disease. Therefore, the objective of this COVA study is to evaluate the safety and efficacy of BIO101, whose active principle is 20-hydroxyecdysone, in COVID-19 patients with severe pneumonia. TRIAL DESIGN: Randomized, double-blind, placebo-controlled, multi-centre, group sequential and adaptive which will be conducted in 2 parts. Part 1: Ascertain the safety and tolerability of BIO101 and obtain preliminary indication of the activity of BIO101, in preventing respiratory deterioration in the target population Part 2: Re-assessment of the sample size needed for the confirmatory part 2 and confirmation of the effect of BIO101 observed in part 1 in the target population. The study is designed as group sequential to allow an efficient run-through, from obtaining an early indication of activity to a final confirmation. And adaptive - to allow accumulation of early data and adapt sample size in part 2 in order to inform the final design of the confirmatory part of the trial. PARTICIPANTS: Inclusion criteria 1. Age: 45 and above 2. A confirmed diagnosis of COVID-19 infection, within the last 14 days, prior to randomization, as determined by PCR or other approved commercial or public health assay, in a specimen as specified by the test used. 3. Hospitalized, in observation or planned to be hospitalized due to COVID-19 infection symptoms with anticipated hospitalization duration ≥3 days 4. With evidence of pneumonia based on all of the following: a. Clinical findings on a physical examination b. Respiratory symptoms developed within the past 7 days 5. With evidence of respiratory decompensation that started not more than 4 days before start of study medication and present at screening, meeting one of the following criteria, as assessed by healthcare staff: a. Tachypnea: ≥25 breaths per minute b. Arterial oxygen saturation ≤92% c. A special note should be made if there is suspicion of COVID-19-related myocarditis or pericarditis, as the presence of these is a stratification criterion 6. Without a significant deterioration in liver function tests: a. ALT and AST ≤ 5x upper limit of normal (ULN) b. Gamma-glutamyl transferase (GGT) ≤ 5x ULN c. Total bilirubin ≤ 5×ULN 7. Willing to participate and able to sign an informed consent form (ICF). Or, when relevant, a legally authorized representative (LAR) might sign the ICF on behalf of the study participant 8. Female participants should be: at least 5 years post-menopausal (i.e., persistent amenorrhea 5 years in the absence of an alternative medical cause) or surgically sterile; OR a. Have a negative urine pregnancy test at screening b. Be willing to use a contraceptive method as outlined in inclusion criterion 9 from screening to 30 days after last dose. 9. Male participants who are sexually active with a female partner must agree to the use of an effective method of birth control throughout the study and until 3 months after the last administration of the investigational product. (Note: medically acceptable methods of contraception that may be used by the participant and/or partner include combined oral contraceptive, contraceptive vaginal ring, contraceptive injection, intrauterine device, etonogestrel implant, each supplemented with a condom, as well as sterilization and vasectomy). 10. Female participants who are lactating must agree not to breastfeed during the study and up to 14 days after the intervention. 11. Male participants must agree not to donate sperm for the purpose of reproduction throughout the study and until 3 months after the last administration of the investigational product. 12. For France only: Being affiliated with a European Social Security. Exclusion criteria 1. Not needing or not willing to remain in a healthcare facility during the study 2. Moribund condition (death likely in days) or not expected to survive for >7 days - due to other and non-COVID-19 related conditions 3. Participant on invasive mechanical ventilation via an endotracheal tube, or extracorporeal membrane oxygenation (ECMO), or high-flow Oxygen (delivery of oxygen at a flow of ≥16 L/min.). 4. Participant is not able to take medications by mouth (as capsules or as a powder, mixed in water). 5. Disallowed concomitant medication: Consumption of any herbal products containing 20-hydroxyecdysone and derived from Leuzea carthamoides; Cyanotis vaga or Cyanotis arachnoidea is not allowed (e.g. performance enhancing agents). 6. Any known hypersensitivity to any of the ingredients, or excipients of the study medication, BIO101. 7. Renal disease requiring dialysis, or known renal insufficiency (eGFR≤30 mL/min/1.73 m2, based on Cockcroft & Gault formula). 8. In France only: a. Non-affiliation to compulsory French social security scheme (beneficiary or right-holder). b. Being under tutelage or legal guardianship. Participants will be recruited from approximately 30 clinical centres in Belgium, France, the UK, USA and Brazil. Maximum patients' participation in the study will last 28 days. Follow-up of participants discharged from hospital will be performed through post-intervention phone calls at 14 (± 2) and 60 (± 4) days. INTERVENTION AND COMPARATOR: Two treatment arms will be tested in this study: interventional arm 350 mg b.i.d. of BIO101 (AP 20-hydroxyecdysone) and placebo comparator arm 350 mg b.i.d of placebo. Administration of daily dose is the same throughout the whole treatment period. Participants will receive the study medication while hospitalized for up to 28 days or until a clinical endpoint is reached (i.e., 'negative' or 'positive' event). Participants who are officially discharged from hospital care will no longer receive study medication. MAIN OUTCOMES: Primary study endpoint: The proportion of participants with 'negative' events up to 28 days. 'Negative' events are defined as respiratory deterioration and all-cause mortality. For the purpose of this study, respiratory deterioration will be defined as any of the following: Requiring mechanical ventilation (including cases that will not be intubated due to resource restrictions and triage). Requiring extracorporeal membrane oxygenation (ECMO). Requiring high-flow oxygen defined as delivery of oxygen at a flow of ≥16 L/min. Only if the primary endpoint is significant at the primary final analysis the following Key secondary endpoints will be tested in that order: Proportion of participants with events of respiratory failure at Day 28 Proportion of participants with 'positive' events at Day 28. Proportion of participants with events of all-cause mortality at Day 28 A 'positive' event is defined as the official discharge from hospital care by the department due to improvement in participant condition. Secondary and exploratory endpoints: In addition, a variety of functional measures and biomarkers (including the SpO2 / FiO2 ratio, viral load and markers related to inflammation, muscles, tissue and the RAS / MAS pathways) will also be collected. RANDOMIZATION: Randomization is performed using an IBM clinical development IWRS system during the baseline visit. Block-permuted randomization will be used to assign eligible participants in a 1:1 ratio. In part 1, randomization will be stratified by RAS pathway modulator use (yes/no) and co-morbidities (none vs. 1 and above). In Part 2, randomization will be stratified by centre, gender, RAS pathway modulator use (yes/no), co-morbidities (none vs. 1 and above), receiving Continuous Positive Airway Pressure/Bi-level Positive Airway Pressure (CPAP/BiPAP) at study entry (Yes/No) and suspicion of COVID-19 related myocarditis or pericarditis (present or not). BLINDING (MASKING): Participants, caregivers, and the study team assessing the outcomes are blinded to group assignment. All therapeutic units (TU), BIO101 b.i.d. or placebo b.i.d., cannot be distinguished in compliance with the double-blind process. An independent data-monitoring committee (DMC) will conduct 2 interim analyses. A first one based on the data from part 1 and a second from the data from parts 1 and 2. The first will inform about BIO101 safety, to allow the start of recruitment into part 2 followed by an analysis of the efficacydata, to obtain an indication of activity. The second interim analysis will inform about the sample size that will be required for part 2, in order to achieve adequate statistical power. Numbers to be randomised (sample size) Number of participants randomized: up to 465, in total Part 1: 50 (to obtain the proof of concept in COVID-19 patients). Part 2: 310, potentially increased by 50% (up to 465, based on interim analysis 2) (to confirm the effects of BIO101 observed in part 1). TRIAL STATUS: The current protocol Version is V 10.0, dated on 24.09.2020. The recruitment that started on September 1st 2020 is ongoing and is anticipated to finish for the whole study by March2021. TRIAL REGISTRATION: The trial was registered before trial start in trial registries: EudraCT , No. 2020-001498-63, registered May 18, 2020; and Clinicaltrials.gov, identifier NCT04472728 , registered July 15, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 Drug Treatment , Ecdysterone/therapeutic use , Respiratory Insufficiency/drug therapy , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/physiopathology , Disease Progression , Double-Blind Method , Extracorporeal Membrane Oxygenation/statistics & numerical data , Hospitalization , Humans , Hypoxia/physiopathology , Middle Aged , Mortality , Oxygen Inhalation Therapy/statistics & numerical data , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Randomized Controlled Trials as Topic , Receptors, Coronavirus/metabolism , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/physiopathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Tachypnea/physiopathology , Treatment Outcome
4.
Aug;
Non-conventional | Aug | ID: covidwho-1399818

ABSTRACT

Since December 2019 we have observed the rapid advance of the severe acute respiratory syndrome caused by the new coronavirus (SARS-CoV-2). The impact of the clinical course of a respiratory infection is little known in patients with hereditary arrhythmias, due to the low prevalence of these diseases. Patients who present with infectious conditions may exacerbate hidden or well-controlled primary arrhythmias, due to several factors, such as fever, electrolyte disturbances, drug interactions, adrenergic stress and, eventually, the septic patient's own myocardial damage. The aim of this review is to highlight the main challenges we may encounter during the Covid 19 pandemic, specifically in patients with hereditary arrhythmias, with emphasis on the congenital long QT syndrome (LQTS), Brugada syndrome (SBr), ventricular tachycardia polymorphic catecholaminergic (CPVT) and arrhythmogenic right ventricular cardiomyopathy.

SELECTION OF CITATIONS
SEARCH DETAIL